Regularity Properties of Some Stochastic Volterra Integrals with Degenerate Kernel

نویسنده

  • L. DECREUSEFOND
چکیده

We derive sampleepaths continuity results for some sto-chastic Volterra integrals with degenerate kernel under integrability assumptions on the integrand. Some applications to processes arising in the analysis of the fractional Brownian motion are given. Embeddings of Besov spaces into sets of HHlder continuous functions are the key elements. RRSUMM. Nous montrons la continuitt trajectorielle d'inttgrales sto-chastiques de type Volterra avec noyaux irrrguliers. Nous appliquons ce rrsultat des processus liis au mouvement Brownien fractionnaire. En corollaire, on obtient des inngalitts maximales pour des processus qui ne sont pas des martingales. Pour ce faire, on utilise des injections d'espaces de Besov dans l'ensemble des fonctions HHlddriennes. 1. Introduction In the analysis of the fractional Brownian motion, some stochastic Volterra integrals with degenerate and nonnconvolutional kernels appear naturally see below Section 4. Several papers do exist on the sampleepaths regularity properties of stochastic Volterra integrals but always with regular or convolu-tional kernels (see for instance 1, 3]). The goal of this paper is thus to derive some continuity results for stochastic integrals of the form

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regularity Properties of Some Stochastic Volterra Integrals with Singular Kernel

We prove the Hölder continuity of some stochastic Volterra integrals, with singular kernels, under integrability assumptions on the integrand. Some applications to processes arising in the analysis of the fractional Brownian motion are given. The main tool is the embedding of some Besov spaces into some sets of Hölder continuous functions.

متن کامل

Stochastic Integration with respect to Volterra processes

We construct the basis of a stochastic calculus for so-called Volterra processes, i.e., processes which are defined as the stochastic integral of a timedependent kernel with respect to a standard Brownian motion. For these processes which are natural generalization of fractional Brownian motion, we construct a stochastic integral and show some of its main properties: regularity with respect to ...

متن کامل

Regularity of Stochastic Volterra Equations by Functional Calculus Methods

We establish pathwise continuity properties of solutions to a stochastic Volterra equation with an additive noise term given by a local martingale. The deterministic part is governed by an operator with an H∞-calculus and a scalar kernel. The proof relies on the dilation theorem for positive definite operator families on a Hilbert space.

متن کامل

The using of Haar wavelets for the expansion of fractional stochastic integrals

Abstract: In this paper, an efficient method based on Haar wavelets is proposed for solving fractional stochastic integrals with Hurst parameter. Properties of Haar wavelets are described. Also, the error analysis of the proposed method is investigated. Some numerical examples are provided to illustrate the computational efficiency and accuracy of the method.  

متن کامل

Higher Order Degenerate Hermite-Bernoulli Polynomials Arising from $p$-Adic Integrals on $mathbb{Z}_p$

Our principal interest in this paper is to study higher order degenerate Hermite-Bernoulli polynomials arising from multivariate $p$-adic invariant integrals on $mathbb{Z}_p$. We give interesting identities and properties of these polynomials that are derived using the generating functions and $p$-adic integral equations. Several familiar and new results are shown to follow as special cases. So...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002